Reaction-diffusion Systems and Nonlinear Waves
نویسندگان
چکیده
The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. The importance of the derived results lies in the fact that numerous results on fractional reaction, fractional diffusion, anomalous diffusion problems, and fractional telegraph equations scattered in the literature can be derived, as special cases, of the results investigated in this article.
منابع مشابه
A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملSpreading Speeds and Traveling Waves for Non-cooperative Reaction-Diffusion Systems
Much has been studied on the spreading speed and traveling wave solutions for cooperative reaction–diffusion systems. In this paper, we shall establish the spreading speed for a large class of non-cooperative reaction–diffusion systems and characterize the spreading speed as the slowest speed of a family of non-constant traveling wave solutions. Our results are applied to a partially cooperativ...
متن کاملWavespeed in reaction-diffusion systems, with applications to chemotaxis and population pressure.
We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formulae for the wavespeed and ill...
متن کاملTraveling waves in coupled reaction-diffusion models with degenerate sources.
We consider a general system of coupled nonlinear diffusion equations that are characterized by having degenerate source terms and thereby not having isolated rest states. Using a general form of physically relevant source terms, we derive conditions that are required to trigger traveling waves when a stable uniform steady-state solution is perturbed by a highly localized disturbance. We show t...
متن کامل2 00 6 Reaction - Diffusion Systems Andnonlinearwaves
The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation...
متن کامل